
• In addition, some languages permit the addition of datatypes such as matrices.

• Furthermore, many languages support “addition” of strings (we use scare-quotes
because we don’t really mean the mathematical concept of addition, but rather
the operation performed by an operator with the syntax +). In some languages
this always means concatenation; in some others, it can result in numeric results
(or numbers stored in strings).

These are all different meanings for addition. Semantics is the mapping of syntax (e.g.,
+) to meaning (e.g., some or all of the above).

This brings us to our first game of:
Which of these is the same?

• 1 + 2

• 1 + 2

• '1' + '2'

• '1' + '2'

Now return to the question above. What semantics do we have? We’ve adopted
whatever semantics Racket provides, because we map + to Racket’s +. In fact that’s
not even quite true: Racket may, for all we know, also enable + to apply to strings, so
we’ve chosen the restriction of Racket’s semantics to numbers (though in fact Racket’s
+ doesn’t tolerate strings).

If we wanted a different semantics, we’d have to implement it explicitly.
Exercise

What all would you have to change so that the number had signed- 32-bit
arithmetic?

In general, we have to be careful about too readily borrowing from the host lan-
guage. We’ll return to this topic later [REF].

3.4 Growing the Language
We’ve picked a very restricted first language, so there are many ways we can grow it.
Some, such as representing data structures and functions, will clearly force us to add
new features to the interpreter itself (assuming we don’t want to use Gödel numbering).
Others, such as adding more of arithmetic itself, can be done without disturbing the
core language and hence its interpreter. We’ll examine this next (section 4).

4 A First Taste of Desugaring
We’ve begun with a very spartan arithmetic language. Let’s look at how we might
extend it with more arithmetic operations that can nevertheless be expressed in terms
of existing ones. We’ll add just two, because these will suffice to illustrate the point.

16



4.1 Extension: Binary Subtraction
First, we’ll add subtraction. Because our language already has numbers, addition, and
multiplication, it’s easy to define subtraction: a− b = a+−1× b.

Okay, that was easy! But now we should turn this into concrete code. To do so, we
face a decision: where does this new subtraction operator reside? It is tempting, and
perhaps seems natural, to just add one more rule to our existing ArithC datatype.

Do Now!

What are the negative consequences of modifying ArithC?

This creates a few problems. The first, obvious, one is that we now have to modify
all programs that process ArithC. So far that’s only our interpreter, which is pretty
simple, but in a more complex implementation, that could already be a concern. Sec-
ond, we were trying to add new constructs that we can define in terms of existing
ones; it feels slightly self-defeating to do this in a way that isn’t modular. Third, and
most subtly, there’s something conceptually wrong about modifying ArithC. That’s
because ArithC represents our core language. In contrast, subtraction and other ad-
ditions represent our user-facing, surface language. It’s wise to record conceptually
different ideas in distinct datatypes, rather than shoehorn them into one. The separa-
tion can look a little unwieldy sometimes, but it makes the program much easier for
future developers to read and maintain. Besides, for different purposes you might want
to layer on different extensions, and separating the core from the surface enables that.

Therefore, we’ll define a new datatype to reflect our intended surface syntax terms:

(define-type ArithS

[numS (n : number)]

[plusS (l : ArithS) (r : ArithS)]

[bminusS (l : ArithS) (r : ArithS)]

[multS (l : ArithS) (r : ArithS)])

This looks almost exactly like ArithC, other than the added case, which follows the
familiar recursive pattern.

Given this datatype, we should do two things. First, we should modify our parser to
also parse - expressions, and always construct ArithS terms (rather than any ArithC

ones). Second, we should implement a desugar function that translates ArithS values
into ArithC ones.

Let’s write the obvious part of desugar:
<desugar> ::=

(define (desugar [as : ArithS]) : ArithC

(type-case ArithS as

[numS (n) (numC n)]

[plusS (l r) (plusC (desugar l)

(desugar r))]

[multS (l r) (multC (desugar l)

(desugar r))]

<bminusS-case>))

17



Now let’s convert the mathematical description of subtraction above into code:
<bminusS-case> ::=

[bminusS (l r) (plusC (desugar l)

(multC (numC -1) (desugar r)))]

Do Now!

It’s a common mistake to forget the recursive calls to desugar on l and
r. What happens when you forget them? Try for yourself and see.

4.2 Extension: Unary Negation
Now let’s consider another extension, which is a little more interesting: unary negation.
This forces you to do a little more work in the parser because, depending on your
surface syntax, you may need to look ahead to determine whether you’re in the unary
or binary case. But that’s not even the interesting part!

There are many ways we can desugar unary negation. We can define it naturally as
−b = 0 − b, or we could abstract over the desugaring of binary subtraction with this
expansion: −b = 0 +−1× b.

Do Now!

Which one do you prefer? Why?

It’s tempting to pick the first expansion, because it’s much simpler. Imagine we’ve
extended the ArithS datatype with a representation of unary negation:

[uminusS (e : ArithS)]

Now the implementation in desugar is straightforward:

[uminusS (e) (desugar (bminusS (numS 0) e))]

Let’s make sure the types match up. Observe that e is a ArithS term, so it is valid to
use as an argument to bminusS, and the entire term can legally be passed to desugar.
It is therefore important to not desugar e but rather embed it directly in the generated
term. This embedding of an input term in another one and recursively calling desugar
is a common pattern in desugaring tools; it is called a macro (specifically, the “macro”
here is this definition of uminusS).

However, there are two problems with the definition above:

1. The first is that the recursion is generative, which forces us to take extra care. If you haven’t heard
of generative
recursion before,
read the section on
it in How to Design
Programs.
Essentially, in
generative recursion
the sub-problem is a
computed function
of the input, rather
than a structural
piece of it. This is
an especially simple
case of generative
recursion, because
the “function” is
simple: it’s just the
bminusS

constructor.

We might be tempted to fix this by using a different rewrite:

[uminusS (e) (bminusS (numS 0) (desugar e))]

which does indeed eliminate the generativity.

Do Now!

18

http://www.htdp.org/
http://www.htdp.org/


Unfortunately, this desguaring transformation won’t work at all! Do
you see why? If you don’t, try to run it.

2. The second is that we are implicitly depending on exactly what bminusS means;
if its meaning changes, so will that of uminusS, even if we don’t want it to. In
contrast, defining a functional abstraction that consumes two terms and generates
one representing the addition of the first to -1 times the second, and using this
to define the desugaring of both uminusS and bminusS, is a little more fault-
tolerant.

You might say that the meaning of subtraction is never going to change, so why
bother? Yes and no. Yes, it’s meaning is unlikely to change; but no, its imple-
mentation might. For instance, the developer may decide to log all uses of binary
subtraction. In the macro expansion, all uses of unary negation would also get
logged, but they would not in the second expansion.

Fortunately, in this particular case we have a much simpler option, which is to
define −b = −1 × b. This expansion works with the primitives we have, and follows
structural recursion. The reason we took the above detour, however, is to alert you to
these problems, and warn that you might not always be so fortunate.

5 Adding Functions to the Language
Let’s start turning this into a real programming language. We could add intermediate
features such as conditionals, but to do almost anything interesting we’re going to need
functions or their moral equivalent, so let’s get to it.

Exercise

Add conditionals to your language. You can either add boolean datatypes
or, if you want to do something quicker, add a conditional that treats 0 as
false and everything else as true.

What are the important test cases you should write?

Imagine, therefore, that we’re modeling a system like DrRacket. The developer
defines functions in the definitions window, and uses them in the interactions window.
For now, let’s assume all definitions go in the definitions window only (we’ll relax this
soon [REF]), and all expressions in the interactions window only. Thus, running a pro-
gram simply loads definitions. Because our interpreter corresponds to the interactions
window prompt, we’ll therefore assume it is supplied with a set of definitions. A set of definitions

suggests no
ordering, which
means, presumably,
any definition can
refer to any other.
That’s what I intend
here, but when you
are designing your
own language, be
sure to think about
this.

5.1 Defining Data Representations
To keep things simple, let’s just consider functions of one argument. Here are some
Racket examples:

(define (double x) (+ x x))

19


